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Background 

The purpose of this research is the development of an unsteady aerodynam- 
ic model for rotors such that it can be used in conventional aeroelastic 
analyses (e. g. , ei genval ue determination and control -system design) . For 
this to happen, the model must be in a state-space formulation such that the 
states of the flow can be defined, calculated, and identified as part of the 
analysis. The proposal upon which this work is based presented such a 
state-space model. In that model, the induced flow is represented as an 
expansion both radially and azimuthally. Although, in principal , any expan- 
sion functions could be used, there is computational advantage in using 
Fourier components in the azimuthal direction and either Legendre functions 
(Pn(v) m where v = 7 1-r ) or P:(v)/v in the radial direction. 

The fluid mechanics of the problem is given by a closed-form inversion 
of an acceleration potential. The result is a set of first-order differen- 
tial equations in time for the unknown flow coefficients. These equations 
are hierarchical in the sense that they may be truncated at any number of 
radial or azimuthal terms. It should be noted that we have consistently 
underestimated the richness and rigor of this approach and have been sur- 
prised several times by what effects are implicitly included in such a model. 
The coefficients of the first-order equations can be written explicitly in  
terms o f  certain integrals o f  the Legendre functions taken over the disk o r  

along streamlines. The right-hand-side of the equations are written in terms 
of integrals of the blade loading which must come from a blade lift theory 
such as 2-D quasi-steady theory, dynamic stall models, or any other lift 
methodology. 

Although the theory is, in principal, "written down", much remains to be 
done before it can be a viable theory for use by designers and researchers. 
First, all of the coefficient matrices need to be determined either numeri- 
cally or (whenever possible) in closed form for easy application. Second, 
the convergence properties of the method must be studied to determine how 
many shape functions are required to match a particular phenomenon. Third, 
theoretical studies need to be performed to determine the strengths and 
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limitations of the model. We already know that the model implicitly in- 
cl udes: 

1.) 
2.) Loewy Theory (with improved time constants) in hover 
3.) Dynamic Inflow Theory 
4.) 
5.) Bessel Function behavior of lift with reduced frequency 
6.) 

The near-wake approximation to the Theodorsen Function 

Hover momentum theory with implicit account o f  tip losses 

Unsteady flow anywhere in the flow field 

However, we do not know how many terms are required to capture these effects 
to a given accuracy; and we do not know the best scheme for distinguishing 
between induced flow due to bound vorticity and flow due to shed vorticity. 
These are the types of questions we expect to answer in this research. 

Technical Personnel 

Three people have been supported on this grant during the first six- 
month period. The principal investigator, David A. Peters, has contributed 
1.0 man-months; a full-time graduate assistant, Cheng-Jian He, has contrib- 
uted 2.0 man-months; and another graduate student, Ay Su, has contributed 1.0 
man-months. Both of these students are working toward Ph.D. degrees. A 
third student, David Doug Boyd, is working on the project but is being 
supported by Georgia Tech funding. He i s  working toward a Master of Science 

Degree in Aerospace Engineering. 

Radial Convergence Issues 

In order to adequately address the convergence issues, we have assembled 
a dynamic set of equations for rigid or elastic blade flapping in hover 
including the wake state variables. Mr. Su is in charge of this work. We 
are presently exercising this model in hover to determine these convergence 
properties. We must first concentrate on hover both because it is the more 
fundamental regime and because the forward flight model is still under 
development. The first area we addressed was convergence to the quasi-steady 
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l i f t - d e f i c i e n c y  f u n c t i o n  of Sissingh, Cur t i ss ,  and Shupe. F o r  t h i s  t o  occur, 

a c e r t a i n  ma t r i x  inner  product  (Q=Z B Z )  must converge t o  15/8 = 1.875 

(where o n l y  the  zeroeth harmonic i s  requ i red ) .  

T -1 

F igure  l a  shows the  convergence o f  Q when the  shape func t i ons  are the  

Legendre Functions. Fo r  t h i s  case, B=I; and Q reduces t o  Z Z. For o n l y  one 

shape func t ion ,  t he re  i s  25% e r r o r ;  b u t  t h i s  e r r o r  i s  reduced t o  2% f o r  two 

func t i ons  and t o  e s s e n t i a l l y  zero f o r  f o u r  func t ions .  F igures l b  and IC show 

the  same p l o t  when P:(v)/v are  taken as the  shape func t ions .  I n  t h a t  case, 

B=R=E-', both o f  which are  known i n  c losed f o r m .  i s  on l y  equal t o  

& inverse i n  the  l i m i t  as the  number o f  f unc t i ons  goes t o  i n f i n i t y .  There- 

fo re ,  we have the  op t i on  o f  us ing  the  t runcated  m a t r i x  (F ig .  l b )  o r  o f  

i n v e r t i n g  the  t runcated  R m a t r i x  (F ig .  I C ) .  I n  the  former case, one shape 

f u n c t i o n  g ives  the  exact  answer; b u t  two shape func t i ons  increases the  e r r o r  

t o  12%. Th is  f o r t u n a t e  occurrence a t  S = l  exp la ins  why dynamic i n f l o w  ( w i t h  

on l y  one shape f u n c t i o n )  can g i ve  the  exact l i f t  de f i c iency .  On the  o ther  

hand, though, the  use o f  a t runcated  m a t r i x  g ives  poor convergence as S 
increases. The inverse  o f  t he  t runcated  8 m a t r i x  (which i s  what one would 

ob ta in  i n  a s t r a i g h t f o r w a r d  a p p l i c a t i o n  o f  the  theory )  has a 12% e r r o r  a t  

S=l, b u t  i t  converges very  r a p i d l y  t o  t he  exact  answer. (Th is  12% e r r o r  i s  

e x a c t l y  t he  8/9 discrepancy between Siss ingh and Shupe due t o  assumption on 

i n f l o w  d i s t r i b u t i o n . )  Therefore,  based on quasi-steady i n f l ow ,  one would 

p r e d i c t  t h a t  a convent ional  a p p l i c a t i o n  o f  P:(v)/v i s  t he  bes t  choice o f  
shape func t i on .  

T 

However, 

The nex t  s tep  i n  t h i s  area has been t o  see how these conclusions vary  

when unsteady terms ar.e added. I n  t h i s  p a r t  o f  our research, we consider 

f u l l  coup l ing  between a l l  harmonics and the  blade. Th is  r e s u l t s  i n  equat ions 

w i t h  p e r i o d i c  c o e f f i c i e n t s  (even i n  hover) .  I n  e a r l i e r  work, we saw these 

p e r i o d i c  c o e f f i c i e n t s  and thought the re  was an inconsis tency.  Ac tua l l y ,  

t he re  i s  no inconsis tency.  The p e r i o d i c  c o e f f i c i e n t s  descr ibe the  t r u e  

r o t a t i n g  t o  non ro ta t i  ng coup1 i ng o f  r o t o r  and wake. When mu1 t i  b l  ade coord i  - 
nates are used f o r  the  r o t o r ,  most o f  t he  p e r i o d i c  c o e f f i c i e n t s  vanish;  b u t  

some remain i f  more i n f l o w  harmonics e x i s t  than there  are  blades. I n  the  

r e s u l t s  o f  F igs.  2 and 3, we neg lec t  p e r i o d i c  c o e f f i c i e n t s .  Th is  i s  equiva- 

l e n t  t o  s tudy o f  on l y  the  c o l l e c t i v e  f l a p p i n g  mode w i t h  c o l l e c t i v e  i n f l o w .  
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This allows us to view the unsteady effect in a simple setting. However, by 
keeping the uncoupled harmonics in the analysis (M=2), we can also compare 
the uncoupled inflow time constants with known, closed-form solutions. 

Figures 2 and 3 show the effect of shape functions (and, thus of the 
inflow dynamics) on the rigid flap damping, collective mode. Figures 2a and 
2b give the Real and Imaginary parts of the fundamental eigenvalue for P:(v) 
as the shape functions. With no dynamic inflow, the Real portion is -y/8= 

-.325; but, as shape functions are added, the solution approaches -.2925. 
The quasi-steady value is -.2167, but the time lag has lessened the lift 
deficiency. Interestingly, it takes 2 shape functions to converge to within 
3% and four shape function to converge completely. Figures 3a and 3b provide 
a similar plot but with P:(v)/v as the shape functions. Here, a similar 
convergence pattern appears. 

The future direction of our work in this area is the inclusion of 
complete, periodic-coefficient coupling. We intend to study the interaction 
of various Floquet modes with the inflow. Hopefully, this will illuminate 
the effects of all types of rotor modes (collective, cyclic, differential, 
etc.) even though we have only a one-bladed model. However, we are prepared 
to add more blades if that is necessary. 

The last area of radial convergence has to do with tip loss. Figures 4a 
and 4b provide static inflow distributions from our theory (unsteady terms 
set to zero) for o=l .  Figure 4a is with P:(v)/v and Fig. 4b is with P:(v) 
for the shape functions. First, we examine Fig. 4a. The dashed-dot line is 
the solution with no tip loss. The solution well approximates the straight- 
line with slope of 1/3 which is the exact solution for inflow. The dashed 
line is the solution when Prandtl's tip-loss function is applied to the 
right-hand side of the equations; and the solid line is the exact Prandtl 
solution. It takes about 8 shape functions to fit this behavior, although 
many fewer give the correct tip-loss factor. In contrast, we see that the 
Legendre functions P:(v) do a poor j o b  of matching quasi-steady values, Fig. 

4b. Although the functions "do their best" to fit the true behavior, the 
fact that they are zero at r=l precludes any true convergence. Based on 
these results, we abandoned P:(v) and are continuing only with P:(v)/v. 
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Harmonic Convergence 

A second important area of our research has been in harmonic conver- 
gence, and part of the results were unexpected. In particular, we were 
surprised in the area of tip-loss factor. As background, recall that our 
original work on this method suggested using Prandtl I s  tip-loss function on 
the right-hand-side of the equations in order to force the lift to zero (and 
the inflow to be finite) at the tip. We wanted to do this because, in quasi- 
steady inflow theory, the induced flow must follow the pressure distribution. 
Thus, the lift does not drop off at the tip. What we failed to recognize, 
however, was that quasi-steady theory is equivalent to an infinite number of 
blades for which there is no tip loss. When we add the unsteady terms, this 
changes. For example, in hover (even for constant collective pitch) the wake 
sees a periodic pressure excitation due to blade passage. Although the fun- 
damental (zero) inflow harmonic will exactly match the shape of the pressure 
distribution, the higher harmonics are influence by the unsteady operator 
which gives inflow that varies as l/m near the tip. 
induced flow at the tip which decreases lift. 

This forces large 

Figure 5a shows this effect for S=l. The results are inflow distribu- 
tions with no tip-loss "correction" but with the unsteady, blade-passage 
terms included. One sees how the inflow begins to climb near the tip as more 
and more harmonics are added. Figure 5b shows the effect as more radial 
functions are added at M=4. By S=4, the solution has essentially converged 
to the Prandtl tip-loss function (compare Fig. 4a). It i s  also interesting 
that fewer shape functions are required to capture tip losses in this 
unsteady manner than were necessary in the quasi-steady version with a 
correction. The reason for this is that the higher-harmonic shape functions 
(m larger) automatically are weighted toward the tip region as m increases. 
Thus, fewer are needed to match the rapid tip-loss gradients near the tip. 
It is also interesting that the true tip-loss behavior has come forth from an 
unsteady term, although tip loss is thought of as a static phenomenon. 
Remember, however, that the "unsteady" harmonic inflow terms (as seen in the 
nonrotating system) can be viewed as static with respect to a moving blade. 
This result adds another impressive item to the list of important effects 
that are automatically included in our unsteady theory. 
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A f i n a l  area o f  quest ions on harmonic convergence deals w i t h  the  conver- 

gence o f  induced f l o w  near the  blade and the  e f fec t  o f  t he  bound v o r t i c i t y .  

I n  our e a r l i e r  work, we found t h a t  induced f l o w  a t  some p o i n t s  could s low ly  

d iverge due t o  the  e f f e c t s  o f  bound v o r t i c i t y  on the  blade. Usual ly ,  n o t  

enough harmonics a re  re ta ined  t o  make t h i s  a p r a c t i c a l  problem ( t h e  t runca-  

t i o n  f i l t e r s  the  sp ike  near the  blade).  However, we know t h a t  we must study 

t h i s  phenomenon f o r  several  b lade chord-wise 1 oadings t o  determine the  t r u e  

e f f e c t .  Th is  i s  the  work of Doug Boyd. He has completed the  debugging o f  

h i s  computer program, and we are  on ly  now beginning t o  i n t e r p r e t  t he  r e s u l t s .  

However, we expect some impor tant  answers soon. 

C1 osed-Form Resul t s  

Another impor tant  area of our research i s  t he  development o f  c losed-form 

expressions f o r  the  mat r ices  and in f l uence  c o e f f i c i e n t s  o f  our theory.  This  

i s  necessary n o t  o n l y  f o r  t he  p u r s u i t  o f  our research b u t  a l so  so t h a t  o thers  

w i l l  be ab le t o  use the  model w i t h  ease. M r .  Cheng-Jian He i s  the  l ead  

research a s s i s t a n t  i n  t h i s  area. 

Table 1 prov ides a summary o f  the  impor tant  r e l a t i o n s  t h a t  we have 

developed. None o f  these have we seen i n  the  l i t e r a t u r e  (save f o r  the  p: 

i n t e g r a l ) .  They have been der ived  by a combination o f  good fo r tune  and 

c leve r  manipulat ions.  For example, we o r i g i n a l l y  had closed-form r e s u l t s  f o r  
t he  f i r s t  row-column o f  each 3 mat r i x  (l=m+l) and f o r  t he  diagonals o f  the  

m=O mat r i x .  From t h i s ,  we guessed a f o r m  f o r  a general A and i t  agreed 

w i t h  numerical r e s u l t s  f o r  as many decimals as we could c a l c u l a t e  f o r  a l l  

(m,l,n) combinations. From t h i s  and the  Legendre recu rs ion  formula, we were 

able t o  f i n d  Tm. and, f rom t h a t ,  we developed the  B: formula.  Then, a 

comparison o f  In and p: and a known r e s u l t  f o r  m=O gave the  general P:Py. 4 ' 

The ex is tence o f  general 6 and mat r ices  i m p l i e s  t h a t  t he  hover theory  

can now be app l i ed  i n  complete g e n e r a l i t y  w i thou t  t he  need f o r  numerical 

i n t e g r a l s  on the  l e f t -hand  s ide.  This  a l so  imp l i es  t h a t  we a re  ab le  t o  

ob ta in  the  eigenvalues and modes o f  the  i n f l o w  model. These come from the  

ma t r i x  [K,] [A][K:]1'2. I n t e r e s t i n g l y ,  t h i s  ma t r i x  comes i n  c losed f o r m  m 1/2 
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(Table 1) and i s  independent of e x p l i c i t  m dependence! However, the  eigen- 

values do depend on the  value o f  m because one takes o n l y  the  m + l ,  m+3, m+5, 

... rows and columns f o r  the  mth harmonic. 

to ry  pa t te rns  i n  r w i t h  more o s c i l l a t i o n s  as n increases f o r  any m. F igure  

The modes f o l l o w  expected o s c i l l a -  

6adshows these modes f o r  the  fundamental e igenvalue (m=0,4), and F i g .  

shows the  second mode f o r  each harmonic. What i s  i n t e r e s t i n g  i s  t h a t  

modes a l l  have zero f l o w  a t  the  blade t i p  which means t h a t  e i t h e r  o f  

candidate shape func t i ons  would converge. The ze ro -ve loc i t y  cond i t i on  a t  

t i p  occurs desp i te  the  f a c t  t h a t  the  fo rced i n f l o w  response does n o t  exh 

t h i s  boundary behavior.  

the  

our 

the  

b i t  

The eigenvalues, which are  the  t ime constants o f  t he  f l o w ,  f o l l o w  d e f i -  

n i t e  pa t te rns  i n  the  r o o t  locus  plane. A 1  though they are pu re l y  r e a l ,  they 

tend t o  couple w i t h  modes ( i n  the  r o t a t i n g  system) t h a t  have f requencies 

c lose  t o  m. Thus, we can p r e d i c t  which modes might  be a f f e c t e d  by each 

i n f l o w  s t a t e  va r iab le .  Table I 1  l i s t s  the  fundamental t ime constant  f o r  each 

harmonic and compares i t  w i t h  both the  geometric mean approximat ion (used i n  

our prev ious work) and the  P i t t  model. We note t h a t  t he  fundamental t ime 

constants a re  c lose  t o  t he  geometric mean approximation, which i s  i n d i c a t i v e  

o f  the  f a c t  t h a t  they are  dominated by the  lowest  order Legendre func t i on .  

We a l so  n o t  t h a t  the  P i t t  model underestimates the  t ime constants  o f  h igher  

modes. 

The f i n a l  area t o  be discussed i s  t he  development o f  the  LLc: m a t r i x  

which conta ins the  i n f l uence  c o e f f i c i e n t s  between a l l  harmonics and a l l  shape 

func t ions .  Recal l  t h a t  t h i s  m a t r i x  depends o n l y  on wake skew angle. The 

computation o f  t h i s  m a t r i x  i s  a monumental t ask  both because o f  t he  complex- 

i t y  o f  t he  Legendre func t i ons  (which are i n teg ra ted  along s t reaml ines t o  

i n f i n i t y )  and because o f  the  number o f  terms. F o r  example, f o r  8 harmonics 

5,220 terms,each a f u n c t i o n  o f  the  skew angle p .  This  i s  t oo  much informa- 

t i o n  t o  pass t o  every p o t e n t i a l  user. It now appears, however, t h a t  we w i l l  

be ab le  t o  condense the  model down t o  on l y  a f e w  c r u c i a l  numbers. Present ly ,  

we have computed numerical values f o r  4 harmonics and 3 shape f u n c t i o n  a t  

values p O " ,  30°, 60", and 90". Based on t h i s ,  we have determined t h a t  each 

m r  combination i s  governed by a s imple func t i on  o f  tan(8/2)  independent o f  n 

and 6 r a d i a l  funct ions per  harmonic, we would have [ (8+1)*(6) ]  2 +[ (8)* (6)12 = 
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and 1. We now have these functions in closed form for both the cosine and 
sine LL matrices. Now, we are working on a simplified form for the coeffi- 
cients themselves. 

To do this, we will need to calculate coefficients for higher harmonics. 
However, this becomes increasingly difficult as the sum of m+n increases. 
Thus, we are working on more efficient means of generation of Legendre func- 
tions. We hope, ultimately, to have a short Legendre Function subroutine 
that potential users could copy in order to use these functions in their own 
modal integrals. Needless to say, we are very excited about these develop- 
ments for the LL matrices and look forward to completion of that part of the 
work. Once the LL matrices are known, we can begin to study the convergence 
of our method in forward flight and see how it might affect flap dynamics. 

Summary 

Our research is progressing very well in every way. We have been con- 
sistently surprised at the richness of physical description that is implicit 
in our model and at the simplicity of structure that falls out of seemingly 
hopeless complexlty. We are right "on track'' to complete all of our first- 
year goals and to begin the second-year effort in July. Sometime before then 
we would like to visit Ames, both to present more details about our findings 
and to answer any questions that the Army and NASA technical people might 
have. 
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